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Abstract: The idea of the equivalent group which can be transferred from molecule to molecule as an intact unit has played 
a key role in understanding molecular structure and reactivity. In the present paper it is shown that introducing a substituent 
into a molecule can produce substantial shifts in electron density, both in the substituent and in the rest of the molecule. Based 
on current concepts, one would not expect to find a high degree of energy additivity in such a situation. However, these changes 
in electron density can be mutually compensating, so that energy and bond length additivity are observed anyway. A surprising 
new result is that energy additivity does not require equivalent, transferable groups which maintain constant electronic structure 
in different molecules. This finding has important implications for any theory attempting to describe multiple substituent 
effects since it may be necessary to explicitly recognize interactions between groups and changes in electronic structure even 
when energy additivity is observed. These phenomena are examined from the viewpoint of a theory of nuclear substitution, 
which has been presented previously. The spatial distributions of electron density, orbital energy, and kinetic energy are used 
to probe the relationship between group transferability and energy additivity. 

Introduction. The Equivalent Group: A Ubiquitous Concept 
Ever since Dalton1 proposed that molecules are composed of 

atoms combined in definite proportions, the concept of the 
equivalent group has provided a focal point in rationalizing 
multiple substituent effects on molecular structure and reactivity. 
The structure of the equivalent group is thought to be an intrinsic 
property of the group and independent of the other structural units 
in the molecule. Consequently, the heat of formation of a molecule 
composed of equivalent groups can be expressed in terms of ad­
ditive contributions of each group. This approach has been 
surprisingly successful for a wide variety of compounds2 and has 
even been applied to bicyclic materials containing strained rings.3 

It has also been recognized that interactions can occur between 
molecular components and that these interactions require addi­
tional contributions to the heat of formation. It is interesting that 
interactions between groups can frequently be treated as additive 
effects. For example, gauche interactions between alkyl groups 
are often additive in such a way that each gauche interaction 
contributes a fixed amount to the heat of formation.4 

Molecular mechanics and force-field approaches5 also preserve 
the basic idea of the equivalent group. Nonbonded interactions 
between two atoms may be described in terms of potential 
functions5 so that the internuclear distance and type of atoms are 
the only variables affecting the interaction. Nonbonded inter­
actions may result in deviations from standard bond lengths and 
bond angles, and this effect also requires additional increments 
to the heat of formation. Again, these contributions depend only 
on the distortion of a specific bond length or bond angle and are 
independent of other interactions or geometric changes in the 
molecule. The high degree of success5 at predicting heats of 
formation has resulted in a general acceptance of the idea that 
fragments can maintain constant electronic and geometric 
structure in different molecules. The equivalent group has gained 
further support from theoretical treatments which reproduce ab 
initio energies and properties of large molecules by transferring 
matrix elements or localized orbitals from simpler structures.6 

(1) J. R. Partington, "A Short History of Chemistry," 3rd ed„ Harper and 
Brothers, New York, 1960, p 173. 

(2) (a) S. W. Benson, "The Foundations of Chemical Kinetics", 
McGraw-Hill, New York, 1960, p 670. (b) D. R. Stull, E. F. Westrum, Jr., 
and G. C. Sinke, "The Chemical Thermodyanmics of Organic Compounds", 
Wiley, New York, 1969. 

(3) (a) J. Gasteiger and O. Dammer, Tetrahedron, 34, 2939 (1978). (b) 
D. Van Vechten and J. F. Liebman, Isr. J. Chem. 21, 105 (1981). 

(4) A. J. KaIb, A. L. H. Chung, and T. L. Allen, / . Am. Chem. Soc, 88, 
1938 (1966). 

(5) N. L. Allinger, Adv. Phys. Org. Chem., 13, 1 (1976). 
(6) B. O'Leary, B. J. Duke, and J. E. Eilers, Adv. Quantum Chem. 9, 1 

(1975). 

The equivalent group concept is also fundamental to the 
Hammett equation7 and other forms of linear free-energy rela­
tionships.8 Hammett suggested that the effect of replacing a 
substituent on the PK11 of benzoic acids could be described in terms 
of a "substituent" parameter (<r) and a "reaction" parameter, p. 
According to Hammett,7 the acid dissociation constant of a 
substituted benzoic acid is given by 

log (KJK0) = op (1) 

where K0 is the acid dissociation constant of benzoic acid, a is 
regarded as an intrinsic property of the substituent and inde­
pendent of the structure of the rest of the molecule. Likewise, 
p is looked upon as an intrinsic property of the group undergoing 
reaction (e.g., -CO2H —*- -CO2

-) and is independent of substituent. 
Numerous refinements8a_e of the Hammett equation have ap­

peared since Hammett's original proposal. Forsyth8f has presented 
a simple extension which provides a rather remarkable correlation 
of rates for aromatic substitution and side-chain solvolysis reactions 
of benzene, naphthalene, furan, thiophene, and other aromatic 
derivatives. 

Forsyth treats field and resonance interactions of the substit-
uents in terms of two parameters (D and E+). The D and E+ 

parameters are regarded as intrinsic properties of the substituent 
and are assumed to be independent of both the specific aromatic 
ring to which the substituents are attached and the relative im­
portance of the field and resonance effects. It is hard to avoid 
questioning these assumptions, but one is faced with the fact that 
Forsyth's model provides an impressive correlation of solvolytic 
and electrophilic substitution reactions in a wide variety of aro­
matic systems. 

The equivalent group models all have one common element: 
characteristic parameters are assigned to certain structural units 
within the molecule, and these parameters remain unchanged even 
when interactions occur between the structural units. The 

(7) L. P. Hammett, "Physical Organic Chemistry", McGraw-Hill, New 
York, 1940. 

(8) (a) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic 
Reactions", Wiley, New York, 1963. (b) S. Ehrenson, Prog. Phys. Org. 
Chem., 195 (1965). (c) C. D. Ritchie and W. F. Sager, ibid., 323 (1965). 
(d) C. D. Johnson, Chem. Rev., 75, 755 (1975). (e) B. Giese, Angew. Chem., 
Int. Ed. Engl., 16, 125 (1977). (f) D. A. Forsyth, J. Am. Chem. Soc, 95, 
3594 (1973). 

(9) One approach to this problem is to apply equivalent group assumptions 
to the derivative of the energy change and to obtain, after integration, a 
nonlinear relationship between two free energy quantities. This leads to a 
simple model for a rate-equilibrium relationship which quantitatively accounts 
for many features of proton transfer and other reactions. However, such a 
semiempirical solution is not as convincing as one derived from a rigorous ab 
initio foundation. J. R. Murdoch, J. Am. Chem. Soc, 94, 4410 (1972). 
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equivalent group approach can account for additivity and even 
some degree of nonadditivity. However, the range of nonadditivity 
is necessarily limited due to the lack of a mechanism for intro­
ducing systematic changes in the substituent parameters as in­
teractions become progressively larger.9 

Theoretical treatment of nonlinear substituent effects will re­
quire understanding of how interactions between structural units 
in a molecule alter the properties of the equivalent group and limit 
the degree of transferability. The solution to this problem has 
assumed a significance that extends well beyond a simple re­
finement of the equivalent group approximation. In recent years, 
there have been an increasing number of curved rate-equilibrium 
relationships for a wide variety of reactions, including proton 
transfer.10 The curvature is an example of a nonlinear substituent 
effect and of a breakdown in the equivalent group concept. 
Through various semiempirical relationships, such as Marcus' 
equation,9'11 it is possible to relate this curvature10 to various factors 
contributing to the overall observed barrier for the reaction. These 
factors include bond making and bond breaking, diffusion, solvent 
reorganization, orientation, and molecular distortions. One im­
plication of these results10 is that making and breaking chemical 
bonds is often less important than these other factors as a con­
tributor to the overall barrier. If valid, this result is of great 
significance for many aspects of mechanistic chemistry and holds 
important implications for the problem of designing catalysts for 
accelerating solution phase reactions. A catalyst which works by 
altering the way bonds are formed and broken involves funda­
mentally different principles than a catalyst which compensates 
for reorganization of solvent, orientation, or conformational 
changes. Unfortunately, no direct experimental evidence is 
available for assessing the relative importance of bond formation 
and other factors to the overall barrier, and so present conclusions10 

must remain as tantalizing deductions derived from a theory9,11 

based on assumptions of questionable applicability. 
The motivation for examining nonlinear substituent effects is 

not to simply reduce the scatter in force-field calculations and 
in Hammett-type relationships, but to provide a reasonable the­
oretical framework for evaluating the present conclusions regarding 
the relatively minor importance of bond formation to reaction 
barriers for certain classes of reactions. The first step in the 
development of a theory of nuclear substitution is presented in 
the previous paper,12 and the results have been used13 to evaluate 
the importance of various contributions to reaction barriers. 
Initially it was thought that nonlinear substituent effects could 
be treated by extending equations based on additivity and the 
equivalent group formalism. However, it became apparent that 
the equivalent group approximation breaks down before energy 
additivity, so that energy additivity persists even after the electronic 
structure of the various molecular units has been altered by mutual 
interactions. Such behavior is totally unexpected on the basis of 
previous models of substituent effects. This phenomenon is ap­
parently general, and in the present paper, the fundamental 
principles behind this unusual behavior are examined through the 
hemistructural relationship. 

The Hemistructural Relationship 
In the previous paper,12 the effect of a relatively simple geometry 

constraint on the molecular wave function and energy was ex­
plored. This geometry constraint relates a "hybrid" structure, 
A-B-C, to two "parent" structures, A-B-A and C-B-C. A 
coordinate system is chosen so that the nuclear coordinates of the 
"A" fragment are the same in A-B-C and A-B-A. A similar 
constraint operates on the "B" and "C" fragments. This type of 
geometric arrangement was termed12 the hemistructural rela­
tionship and can be regarded as a form of geometry additivity. 

(10) For leading references, see: J. R. Murdoch, J. Am. Chem. Soc, 102, 
71 (1980). 

(11) (a) R. A. Marcus, J. Phys. Chem., 72, 891 (1968). (b) A. O. Cohen 
and R. A. Marcus, ibid., 72, 4249 (1968). 

(12) J. R. Murdoch, / . Am. Chem. Soc, 104, 588 (1982). 
(13) (a) D. E. Magnoli and J. R. Murdoch, J. Am. Chem. Soc. 103, 7465 

(1981). (b) J. R. Murdoch and D. E. Magnoli, J. Am. Chem. Soc, in press. 

An important consequence of the hemistructural relationship is 
the exact transferability of all integrals necessary for defining the 
Hartree-Fock wave function.12,14 

Integral transferability leads to the useful result that the nu­
clear-electron attraction matrix elements for C-B-C, (Vj)CBC, 
can be expressed12 as an additive sum of three contributions: 

(^ )CBC = (JVOABA + V>VJJ)CBA + WJ)ASC (2) 

where 

(« ^ C B A = ( ^ C B A " ( ^ A B A O ) 

(* ^ JOABC = ( VJ)ABC - ( VJ)ASA (4) 

It has also shown that these additive changes in Vj could12 lead 
to a similar additivity in the MO coefficients for C-B-C (&,) 

+, = E(fl°,m + a'm)<f>m (5) 
m 

where the corresponding unperturbed M O for A - B - A is given 
by 

*,° = Za°vm<t>m (6) 
m 

and 0m represents a complete set of nuclear-independent basis 
functions.14 The coefficient additivity allows a'm to be expressed 
as 

a',m = <*\m + a\m P) 

where £m is the change in coefficients for the perturbation A-B-A 
—*• A-B-C, while a\m is the change in coefficients for A-B-A -*• 
C-B-A. 

When a'm (eq 7) is substituted into the expression for the kinetic 
energy12 

OCC 

7 - 2 E L E (a°„ + a',j)T^ + «'„) (8) 
T ' / 

it is seen that the linear terms contributing to T (i.e., a'„;Tya°„,) 
are a function only of a ',j and respond independently to separate 
changes in nuclear charge and position. Consequently, the linear 
contribution to T is additive. 

The behavior of the kinetic energy is important since the virial 
theorem requires that the total energy and the kinetic energy 
respond in equal but opposite fashion to substituent changes.12 

While the virial theorem requires that the total potential energy 
(V= Kne + Vn+ KnJ show the same degree of additivity as T 
and E, this does not apply to the individual terms Kne, Vx, and 
VnJ

2 Consequently, it is possible to observe a high degree of 
additivity in E, Ty and V, even though Kn,., K„, and Knn are 
essentially nonadditive. One consequence of these relationships 
is that the total energy (E = T + Kne + VK + Knn) will always 
be more additive than the orbital energy (E0= T+ Vm + 2K6J.12 

According to standard forms of perturbation theory,15 energy 
additivity is associated with first-order energy differences and no 
change in MO coefficients. Changes in MO coefficients produce 
second-order changes in energy which are nonadditive.12 Con­
sequently, the degree of energy additivity has been thought to 
depend on the degree to which changes in MO coefficients and 
second-order energy corrections are negligible. Group transfer­
ability has generally been regarded as a necessary prerequisite 

(14) The integral transferability leads to a simplified behavior of the 
Hartree-Fock wave function and energy. The transferability was demon­
strated using a complete basis set where the basis functions are independent 
of nuclear charge and position. The transferability is basis set dependent, but 
the resulting behavior of the Hartree-Fock wave function holds for all com­
plete basis sets regardless of integral transferability. The immediate value 
of integral transferability is not as a computational advantage, but as a means 
of exposing the relationship between the wave functions and energy of ABA, 
ABC, and CBC. Integral transferability is obviously an appealing idea for 
executing actual calculations, but it involves a number of tradeoffs which are 
presently undergoing careful consideration. 

(15) (a) F. L. Pilar, "Elementary Quantum Chemistry", McGraw-Hill, 
New York, 1968. (b) M. J. S. Dewar, "The Molecular Orbital Theory of 
Organic Chemistry", McGraw-Hill, New York, 1969. 
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Table I. Calculated2 Energy Components for 
Proton-Bound Rare Gas Dimers 

Table II. Additivity of Energy Components. Mean Deviations" 
for Proton-Bound Rare Gas Dimers (ArHNe+) 

NeHNe+ NeHAr+ ArHAr+ 

E0, a-
T 
V Kne 
*ex 
T/ 
' on 

-153.467620 
253.510 356 
-675.555 372 
-24.675 115 
158.963 814 
34.245 961 
-253.510357 

n 1.010 393 87 
rN e H , 2.044 036 66 

bohr 

bohr 

-402.282 828 
648.128 243 
-1638.342 345 
-42.753 512 
336.719 148 
48.119952 
-648.128513 

1.0000169986 

2.044 036 66 

2.836435 33 

-651.101725 
1042.746 459 
-2616.749610 
-60.850 379 
522.301092 
69.805 928 
-1042.746 510 

1.009 675 95 

2.836 435 33 

° Standard 3G exponents are scaled by n2. Gaussian lobe func­
tions replace Cartesian p Gaussians (J. L. Whitten,/. Chem. Phys., 
44, 359 (1966)). b The orbital exponents for NeHAr+ were taken 
from the corresponding scaled values for NeHNe+ and ArHAr+ 

(except for the proton whose exponents are the average of those 
for the proton in the two symmetrical structures) and then scaled 
by (1.000 016 998)2. 

for energy additivity.16 The problem with basing a theory of 
nuclear substitution on this foundation is that there are many 
examples of additivity to within a few tenths of a kilocalorie, even 
though it is apparent from other properties that substantial changes 
in MO coefficients have taken place. This prompted a new 
theoretical treatment12 which shows that while energy additivity 
can be associated with coefficient additivity (eq 7), there is no 
absolute requirement that constant electron density be maintained 
in a particular region of space or over a specific molecular orbital. 
This carries the important implication that energy additivity is 
not linked to the degree of structural transferability. This result 
is unprecedented and in the following sections, the relationship 
between additivity and transferability is examined by analyzing 
the behavior of the various energy components (T, VM, Vx, Vm) 
and by comparing the spatial distribution of electron density, 
orbital energy, and kinetic energy. 

Energy Additivity and Transferability. Proton-Bound Rare 
Gas Atoms 

Initially, it was desirable to examine a simple system where 
transferability might have a good chance of adequately describing 
energy additivity. Consequently, proton-bound rare gas dimers 
were the first molecules to be studied, since a minimum of elec­
tronic and geometric reorganization is expected17 in the series 
XHX+, XHY+, and YHY+ (X and Y are rare gas atoms). 

Calculations were carried out with GAUSSIAN 7018 and PRO-
METHEUS x,19 using Pople's standard 3G basis set as well as a 
rescaled version which is described in Table I. The energies and 
optimized geometries (3G basis) of X, H-X+ , and XHY+ (X, Y 
= He, Ne, Ar) are reported in the following paper.13b Since the 
calculated energy of NeHAr+ was found to be within 0.1 kcal of 
the mean energy of NeHNe+ and ArHAr+, this system was ex­
amined further. It is interesting to note that the optimized ge­
ometry of NeHAr+ is close to the hemistructural geometry: the 
H-Ne distance is shorter by 0.004 A and the H-Ar distance is 
longer by 0.011 A relative to the hemi-structural geometry. 

In general, the virial theorem will not be satisfied for calcu­
lations employing a minimal basis set such as 3G, unless the 
exponents and bond distances are rescaled. Procedures for scaling 

(16) (a) T. L. Allen and H. Shull, /. Chem. Phys., 35, 1644 (1961). (b) 
M. Levy, W. J. Stevens, H. Shull, and S. Hagstrom, ibid., 61, 1844 (1974). 
(C) R. F. W. Bader and P. M. Beddall, Chem. Phys. Lett., 8, 29 (1971). (d) 
R. F. Bader and G. R. Runtz, MoI. Phys., 30, 117 (1975). 

(17) (a) V. Bondybey, P. K. Pearson, and H. F. Schaefer III, /. Chem. 
Phys., 57, 1123 (1972). (b) P. S. Julienne, M. Krauss, and A. C. Wahl, Chem. 
Phys. Lett., 11, 16 (1971). 

(18) W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. 
Pople, QCPE, 11, 236 (1973). 

(19) PROMETHEUS x is an experimental SCF-MO program now under 
development at UCLA. It will be described in detail elsewhere. 

A£„ 
AT 

Al 7 He, 
AK e x

b 

mean deviation, 
kcal 

+ 1.157 
-0.103 
+4900.867 
+ 5.794 

AK c o
b 

AK n n 

AE 

mean deviation, 
kcal 

-2455.598 
-2451.010 
-0.050 

0 Mean deviation equals the quantity calculated for ArHNe+ 

minus the corresponding average quantity for ArHAr+ and 
NeHNe+. b The total electron/electron repulsion (Vee) is given by 
Vee = F6 x + Vco, where Vex is the exchange energy and Vco is 
the Coulomb energy. 

Table III. Population Analysis0 for NeHNe+, 
NeHAr+, and ArHAr+ 

NeHNe NeHAr ArHAr 

Is 
2s 
2p* 
2py 

2P2 
Is 
2s 
2p* 
2 Py 
2P0 
3s 
3p* 
3 Py 
3P.2 
H Is 

a Scaling 

1.999 393 52 
1.97356767 
1.73711833 
2.00 
2.00 

0.579 840 96 

1.999 39216 
1.973 216 75 
1.705 95561 
2.00 
2.00 
1.999 973 25 
1.999139 88 
1.994 51130 
2.00 
2.00 
1.986 947 36 
1.731135 24 
2.00 
2.00 
0.609 71849 

1.999 973 36 
1.999 143 82 
1.993 95165 
2.00 
2.00 
1.986 137 19 
1.690 575 01 
2.00 
2.00 
0.660437 93 

; factors are the same as those from Table I. Scaling has 
a negligible effect on the population analysis. 

approximate Hartree-Fock wave functions have been reported,20 

but it was found that the scaled wave function and the wave 
function obtained from another calculation with the new scaling 
factors were invariably in poor agreement. 

The calculations presented in Table I use a new scaling pro­
cedure which will be described elsewhere. For Pople's standard 
3G basis set, the scaling factors and bond distances reported in 
Table I yield wave functions satisfying the virial theorem (E/ T 
+ 1 = 0) to better than 10"6. 

The scaled energies show a high degree of additivity: the energy 
of NeHAr+ is 0.05 kcal lower than the mean energy of NeHNe+ 

and ArHAr+. In striking contrast, V1x for NeHAr+ deviates from 
the mean by +4900.87 kcal, while (V1x + Vnn) diverges in the 
opposite direction by -4900.81 kcal. The near cancelation of 
repulsive and attractive terms is required by the virial theorem12 

since the total potential energy and total energy are related as 
E = V/2. 

A. Energy Additivity. A Classical Electrostatic Viewpoint. The 
high degree of additivity for E, T, and V (Table II) suggests that 
we examine several simple models for rationalizing additivity. One 
approach is to test the possibility that Ar and Ne in the three 
structures are behaving as essentially neutral, unpolarized atoms 
(or high-order multipoles), so that Ar/Ne, Ar/Ar, and Ne/Ne 
interactions are negligible. If this were the case, the classical 
electrostatic energy, representing the total attractions and re­
pulsions of the nuclei and the quantum mechanical electron 
distribution, should show a degree of additivity comparable to the 
quantum mechanical total energy. The classical electrostatic 
energy can be obtained from E by subtracting the exchange 
contribution (Kex) from VK.n Vn for NeHAr+ deviates from the 
mean Vn for NeHNe+ and ArHAr+ by +5.8 kcal, so that the 
classical electrostatic energy is nonadditive by -5.85 kcal. Con­
sidering that the total range of energy covered by these structures 
is over 490000 kcal, this degree of additivity is quite impressive, 

(20) E. Scarzafava and L. C. Allen, J. Am. Chem. Soc, 93, 311 (1971). 
(21) S. Wolfe and A. Rauk, /. Chem. Soc. B, 136 (1971). 
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Figure 1. Projected electron density difference plot for ArHNe+. The 
figure is constructed by separately placing NeHNe+, ArHNe+, and 
ArHAr+ in the xy plane and integrating the electron density along the 
z axis from the surface of the plane to «°. Each molecule is divided in 
half through the hydrogen and the difference between the electron density 
distribution of the Ar fragment in the parent and the Ar fragment in the 
hybrid is plotted in the left half of the grid. The corresponding differ­
ences for Ne appear in the right half of the grid. The maximum equals 
0.00892 electron/bohr2. 

but it is also clear that near additivity of the classical electrostatic 
energy does not explain the even higher additivity observed for 
E, Ty and K.22 

B. Energy Additivity. The Orbital Energy. The orbital energy 
of NeHAr+ is additive to within 1.16 kcal. The deviation is about 
20 times the discrepancy observed for the total energy and is in 
qualitative agreement with previous expectations.12 Additive total 
energies cannot be explained by invoking additive orbital energies.12 

C. Energy Additivity and the Equivalent Group. Electron 
Density Distribution. It would also be interesting to examine the 
equivalent group model as a rationalization for additivity. In Table 
III, the Mulliken population analyses for NeHNe+, NeHAr+ and 
ArHAr+ are listed. The major orbitals contributing to bonding 
are the Ne 2px, Ar 3px, and H Is where the x direction lies along 
the internuclear axis. The Mulliken analysis shows a reduced 
population (by 0.031) for the Ne 2px orbital of NeHAr+ relative 
to NeHNe+, while the population for Ar 3p* increases (by 0.041) 
on going to the hybrid structure. The H Is population for NeHAr+ 

(0.6097) is bracketed by the corresponding populations for 
NeHNe+ (0.5798) and ArHAr+ (0.6604). The overall pattern 
is not consistent with a constant wave function and transferable 
groups, but with small increases in density in one region and 
compensating decreases in another region. 

This conclusion is reinforced by examining differences in the 
spatial distribution of electron density as seen in Figure 1. Figure 
1 is constructed by placing each molecule in the xy plane and 
integrating the electron density along the z axis from the surface 
of the plane to °°.23 Each molecule is divided in half through 
the hydrogen and the difference between the electron density 

(22) The classical electrostatic energy was also calculated in a self-con­
sistent fashion by allowing the iterative Hartree-Fock procedure to continue 
without the contribution of the exchange integrals. This method converged 
for the systems examined here and invariably resulted in a higher degree of 
nonadditivity. The iterative calculations were performed with the standard 
3G basis and are not scaled. The total energy (quantum mechanical) of 
NeHAr+ deviates by only 0.1 kcal from the mean, while the classical energy 
for the quantum mechanical charge distribution deviates by -6.0 kcal from 
the mean. These results are comparable to those obtained with the scaled basis 
set. The "self-consistent" classical energy deviates by -11.9 kcal from the 
mean. 

(23) Integration of electron densities along lines or over volumes and areas 
has been used previously. Examples include: (a) P. Politzer and R. R. Harris, 
J. Am. Chem. Soc, 92, 6451 (1970). (b) R. F. W. Bader and P. M. Beddall. 
ibid., 95, 305 (1973). (c) A. Streitwieser, Jr., J. E. Williams, Jr., S. Alex­
andras, and J. M. McKelvey, ibid., 98, 4778 (1976). Streitwieser has used 
the term electron projection function to describe the line integral of the 
electron density along a path perpendicular to the molecular plane, (d) K. 
B. Wiberg, ibid., 102, 1229 (1980). 
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Figure 2. Projected orbital energy difference plot for ArHNe+. The 
orbital energy is evaluated as a function of the spatial coordinates ac­
cording to eq 10, and projected differences are plotted as in Figure 1. (a) 
Core orbitals, maximum equals 0.499 au/bohr2. (b) Valence orbitals, 
maximum equals 0.00868 au/bohr2. The integration mentioned in the 
text refers to the combined sum of core and valence orbitals. 

distribution of the Ar fragment in the parent and the Ar fragment 
in the hybrid is plotted in the left half of the grid. The corre­
sponding differences for Ne appear in the right half of the grid. 
The overall pattern is one of small but compensating changes in 
electron density in different spatial regions. For example, the dip 
in Figure 1 near the Ar region corresponds to about 0.04 e com­
pared to 18 e assigned to this half of the grid for ArHAr+. The 
pronounced rise near the Ar half of the proton corresponds to 
roughly 0.025 compared to 0.33 e assigned to the Ar half of the 
proton in ArHAr+. These assignments have been based on the 
Mulliken analysis and not on partial integration over the surface 
of the grid. Nonetheless, they serve to emphasize that the overall 
changes in electron distribution are relatively small (0.2% to 8%) 
and that decreases in one region are offset by increases in another 
region. 

D. Energy Additivity and the Equivalent Group. Spatial Dis­
tribution of Orbital Energy. The consequences of these com­
pensating increases and decreases of electron density on energy 
additivity can be seen by plotting out differences in the spatial 
distribution of energy. The energy corresponding to the exact wave 
function is given by 

E = JVHV dr (9) 

The integrand, \pHip dr, can be interpreted as the energy con­
tribution from volume element dr and can be assigned a spatial 
coordinate just as charge density can be assigned a spatial co­
ordinate. If H is the Fock operator and \pt is one of the Fock 
eigenfunctions, 

6E1 = +Mi dr = Wfa dr = (E1)(M, °*r) (10) 

Equation 10 gives us the interesting result that the orbital energy 
contribution from volume element dr is equal to the fraction of 
electron density in the volume element times the orbital energy 

file:///pHip
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Table IV. Total Energies of Proton-Bound Anions (au) 

XHCH3-

XHNH2-

XHOH" 

XHF" 

X = H3C 

-78.585 491° 
-79.530 231b 

X=H2N" 

-94.345 572 
-95.528 372 

-110.103 735 
-111.524683 

X = HO-

-113.866693 
-115.364 749 
-129.623 211 
-131.362636 
-149.139 171 
-151.201 189 

X = F-

-137.482368 
-139.378861 
-153.237 201 
-155.374485 
-172.750970 
-175.215603 
-196.359605 
-199.234 027 

a Standard 3G basis set, geometries given in Table V. b Standard 4-31 basis set. 

corresponding to \pt. In other words, the orbital energy of each 
MO and the electron density are partitioned in space in the same 
proportional manner. Equation 10 is strictly valid only when \p, 
is an exact eigenfunction of the operator H. However, even at 
the 3G level, gross deviations in electron density distribution and 
in the relative orbital energies are not expected, and since we are 
interested in qualitative comparisons, eq 10 has been used as a 
simple alternative to evaluating the integrand of eq 9 at each point 
in space. 

Plots showing differences in the spatial distribution of orbital 
energy can be easily constructed by weighting projected electron 
density plots for each MO with the orbital energy, summing over 
occupied MOs and forming differences as with Figure 1. An 
example of such a plot is shown in Figure 2, which can be regarded 
as a projected orbital energy difference (POED) graph in analogy 
with the projected electron density difference (PEDD) plot23 in 
Figure 1. 

Figure 2 is a useful supplement to PEDD plots since the en­
ergetic consequences of a charge redistribution can be more easily 
evaluated. The main point is that the compensation observed in 
the PEDD plot also comes through in the POED plot. The orbital 
energy is nonadditive by 1.16 kcal and from Figure 2 it is apparent 
that this degree of additivity in the total orbital energy is due to 
cancelation of substantially larger positive and negative deviations 
in different spatial regions. Each half of the grid in Figure 2 
integrates to about |40| kcal. 

E. Energy Additivity and the Equivalent Group. Spatial Dis­
tribution of Kinetic Energy. Projected kinetic energy difference 
(PKED) plots can be constructed by integrating 

d r , = *,7V, dr (H) 

along the z axis and forming differences between corresponding 
fragments. Since even the exact \j/t is not an eigenfunction of the 
kinetic energy operator, the kinetic energy density is not pro­
portional to the electron density in the same volume element. The 
properties of the kinetic energy are of interest since it was shown 
via the virial theorem12 that total energy additivity occurs to the 
extent that the kinetic energy is additive. The virial theorem does 
not apply to the individual regions corresponding to the Ar and 
Ne fragments,24 but it is still of interest to examine the contribution 
of each spatial region to the total kinetic energy. Since com­
pensating shifts in electron density and orbital energy have been 
previously noted, compensating differences in the PKED plots 
would also be expected.25 In Figure 3 this expectation is realized 
and it can be shown that the additivity in total kinetic energy 
(-0.10 kcal of the mean) is not due to a nearly constant distribution 
of kinetic energy over the Ar and Ne regions. Large positive 
changes (~80 kcal)26 in the Ar area are canceled by nearly equal 

(24) Bader has outlined conditions which are sufficient for dividing a 
molecule into "virial" fragments so that each fragment satisfies the virial 
theorem (ref 16d). 

(25) Bader has also shown that the total kinetic energy within "virial" 
fragments (ref 24) can be uniquely defined, even though the kinetic energy 
at a given point is not necessarily unique. Bader has also shown that the 
kinetic energy of a volume element is a function of the charge density in that 
element so that the compensating pattern seen in PEDD plots should be 
repeated in the PKED plots. The significance of the particular distribution 
represented by eq 11 is that it corresponds to the contribution of each volume 
element to the kinetic energy expectation value, (i/-,T^,). 

Figure 3. Projected kinetic energy difference plot for ArHNe+. The 
kinetic energy is evaluated as a function of the spatial coordinates ac­
cording to eq 11, and projected differences are plotted as in Figure 1. 
Maximum equals 2.216 au/bohr2. 

negative changes in the Ne area to give excellent overall additivity 
(0.1 kcal). 

F. Additive Total Energy Does Not Require Equivalent Groups. 
The conclusions are clear. The additivity seen in the calculated 
total energy for ArHNe+ is not due to transferable groups of nearly 
constant electronic structure or to additivity of the orbital energy 
or of the classical electrostatic energy. The electronic environments 
of the Ar, Ne, and H regions are noticeably different in the 
hemistructural molecule and in the parents. These changes in 
electronic structure account for energy differences one to three 
orders of magnitude larger than the overall deviation from ad­
ditivity. Additivity is observed because the changes in electronic 
structure are mutually compensating. 

It is important to place the differences in Figures 1-3 in proper 
perspective. For example, the kinetic energy difference over the 
Ar fragment in Figure 3 is about 80 kcal. Since the total kinetic 
energy over the Ar fragment in ArHNe+ is ~327 000 kcal, the 
perturbation could be regarded as small.27 From this viewpoint, 

(26) The integrations over the area of the grid are performed numerically 
using Gaussian quadrature or Simpson's rule. The PKED function integrated 
over the Ar half of the grid gives 0.032169 au. The total kinetic energy 
difference on the Ar half is 4(0.032169) au, since allowance must be made 
for the PKED function below the grid (factor of 2) and for two electrons per 
orbital. The PKED function integrated over the Ne half of the grid gives 
-0.031988 au, corresponding to a kinetic energy difference of-4(0.031988) 
au. The total deviation from additivity is given by 4(0.032169 - 0.031988) 
au = 0.45 kcal which is in reasonable agreement with 0.1 kcal determined by 
direct calculation. 

(27) It was mentioned earlier that the energy difference between NeHNe+ 

and ArHAr+ amounts to over 495 000 kcal, and one could legitimately wonder 
about the applicability of perturbation arguments to such a large energy 
change. However, by employing a "balancing" trick this huge difference can 
be reduced. It is instructive to compare the energies of the isonuclear and 
isoelectronic structures [NeHNe+ + Ar + Ar], [ArHNe+ + Ar + Ne], and 
[ArHAr+ + Ne + Ne]. The total energies of the three structures are13b 

-1295.930139, -1295.895290, and -1295.860773 au, respectively, and the 
energy range is now about 44 kcal instead of 495 000 kcal. Expressed as a 
fraction of the total energy, the 44 kcal perturbation is quite small: <0.006%. 
The changes in Mulliken population (Table III) also indicate a small per­
turbation: the variations are largest for the valence px orbitals of Ar (0.041 
e) and Ne(0.031 e) and for the H Is orbital (0.081 e). Based on two electrons, 
these changes amount to 4% or less. As one might expect from the small 
population variations, the changes in density matrix elements are also small. 
The largest change in diagonal elements is for the H Is orbital (12%) and the 
changes for the remaining elements are less than 4%. The pattern is similar 
for the off-diagonal elements. Overall, these results suggest that treating 
NeHNe+, ArHNe+, and ArHAr+ in terms of perturbation theory12 is rea­
sonable. A more complete evaluation of the quantitative applicability of 
perturbation theory is desirable and is currently in progress. 
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Table V. Optimized" Bond Lengths for Proton-Bound Anions 

'XH > A 

Xc = 
H3C" XC = H2N" Xc = HO" XC=F" 

XHCH3- 1.3784 1.2018 1.0747 1.0253 
(+0.0037)6 (+0.0096)b (+0.0642)b 

XHNH2- 1.4516 1.2713 1.1208 1.0426 
(+0.0027)" (+0.0323)b 

XHOH" 1.4907 1.3306 1.1774 1.0760 
(-0.0001)b 

XHF" 1.5313 1.3750 1.2153 1.114 

° Standard 3G basis set. b Deviation of X-Y distance from 
mean of X-X and Y-Y distances. c rCK = 1.1090 A, AHCH = 
101.01° (methyl hydrogens, C3 symmetry), /-^H = 1-0310 A, 
AHNH = 106.7° (all HNH angles). r0H = 0.9660 A, AHOH = 
104.5° (bridging HOH angle). Hydrogens on fragments are always 
in trans, staggered geometries where appropriate. 

Ar has a very similar electronic structure in ArHAr+ and in 
ArHNe+, and the transferable group concept accounts for nearly 
99.98% of the total energy. As long as we do not worry about 
the remaining 0.02%, the transferable group is a reasonable de­
scription. However, it is fair to say that the additivity seen for 
the total kinetic energy of ArHNe+ (0.1 kcal, Table II) has little 
or nothing to do with the degree of fragment transferability. The 
0.1 kcal is due to a near cancelation of large (~80 kcal) positive 
and negative deviations in separate spatial regions. In this sense, 
the variations in the spatial distribution of kinetic energy are 
substantial, and additivity persists in spite of the breakdown in 
transferability. 

G. Variations in Total Energy Follow the Variations in Kinetic 
Energy. It was shown12 that the kinetic energy will respond to 
a perturbation in a simpler fashion than the individual potential 
energy components (Knn, VM, and Vx). The fundamental reason 
for this behavior is that the kinetic energy change can be described 
solely in terms of the change in wave function since the kinetic 
energy operator does not change12 for the type of perturbation 
represented by the hemistructural relationship. The potential 
energy variations involve changes in both the operator and wave 
function. The extra terms associated with the operator ensure 
a more complicated relationship between Kne, Vx, and Vm than 
for T.12 The importance of understanding the behavior of the 
kinetic energy lies in the fact that if the hemistructural molecule 
corresponds to an equilibrium geometry or transition state, the 
total energy {E = T + Vne + Vx + Vm) will also equal -T. This 
relationship also requires that E = V/2 where V = Kne + Vx + 
Vm. Satisfaction of these constraints requires that the complexities 
present in the individual terms Kne, V1x, and Vnn cancel away in 
the sum. Since these restrictions do not apply to the orbital energy 
(E0 = T+ Vx + 2Vx) and since Vm and Vx are generally unequal 
and nonadditive, the orbital energy will be less additive than E, 
T, or V. These features of the nuclear substitution theory12 come 
through in very striking fashion (Table II). 

Proton-Bound First Row Anions 

In Table IV, energies are reported for XHY - where X and Y 
are anions (H3C", H2N -, HO -, P ) . The calculations have been 
performed using Pople's 3G and 4-3IG basis set. It is well known 
that Hartree-Fock theory gives poor descriptions of anions28 and 
that realistic computations must include correlation energy. 
Nonetheless, certain trends within the calculated properties clearly 
illustrate some of the features predicted for hemistructural 
molecules.12 Consequently, we feel that these results are worth 
a brief discussion. 

The energies reported in Table IV correspond to geometries 
which have been carefully optimized at the 3-G level with respect 
to the X-H and H-Y distances. Internal coordinates of the X 
and Y fragments have not been optimized and correspond to our 

(28) W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, 
Prog. Phys. Org. Chem., 11, 175 (1974). 

Table VI. Energy Additivity (kcal). Proton-Bound Anions 

X=H2N' X=HO' X = F' 

XHCH3- -0.6° -2.7° -6.2° 
-0.6b +0.6b +2.1b 

XHNH2- -1.1° -3.5° 
+ 0.2b +3.1b 

XHOH" -1.0° 
+ 1.3b 

° Energy deviation of XHY" from mean energy of XHX" and 
YHX"; 3G basis set; geometries listed in Table V. b Same as a 
above, except calculations are performed at the 4-31 level. 

estimates of reasonable values. The complete fragment geometries 
are given in Table V. One interesting result is that if the X-H-Y 
structure contains adjacent atoms in the first row of the periodic 
table, then the energies show a high degree of additivity. Examples 
are H2N-H-CH3", HO-H-NH2-, and F-H-OH" where the de­
viations from additivity are 0.6, 1.1, 1.0 kcal, respectively. As 
the X and Y fragments diverge further in structure, additivity 
begins to break down as seen in the sequence H2N-H-CH3" (0.6 
kcal), HO-H-CH3" (2.7 kcal), F-H-CH3" (6.2 kcal) (Table VI). 

The 3G basis set predicts the basicity order P > HO" > H3C" 
> H2N", which is incorrect29 and is probably due to the pro­
gressively poorer description of the central atom of the anion with 
increasing nuclear charge. However, it is interesting that the 
deviations from the hemistructural geometry apparently correlate 
with the electronegativity of the end atoms. In X-H-Y" for 
constant Y, the X-H distance shortens and the H-Y distance 
lengthens as the difference in electronegativity between X and 
Y increases. It is especially noteworthy that the H coordinates 
deviate more from the hemistructural position than the X or Y 
coordinates. For example, the O-H distance in H O - H - P 
lengthens by 0.0379 A compared to HO-H-OH", while the H-F 
distance shortens by 0.0380 A compared to F - H - P . As a result, 
the O-F distance is within 0.0001 A of the mean O-O and F-F 
distances. This behavior is somewhat analogous12 to Johnston's 
proposal of bond order conservation30 in transition states of 
atom-transfer reactions, and has been predicted from an analysis 
of the nuclear forces at the hemistructural geometry.12 This 
pattern holds fairly well for X, Y = O, F; N, O; and C, N and 
progressively breaks down as X, Y diverge further in structure. 
It is interesting to note that the deviations are greater for the X-H 
and Y-H distances than for the X-Y distance, as predicted.12 

These basic results have also been observed when the calcu­
lations are repeated at the 4-31 level. Full geometry optimizations 
for all systems have not yet been done, but the degree of energy 
additivity for the hemistructural geometries is fully comparable. 
Similar results have been noted for other anions (e.g., CH3O", 
CH3CH2O", HC=C", N=C", H C = C - C H 2 " , N = C - C H 2 " ) 
with both 3-G and 4-31 basis sets. Hydride bound cations, in­
cluding alkyl, cyclopropenyl, and azacyclopropenyl, have also been 
examined with similar results. The 3-G and 4-31 basis sets have 
been used in the present study as economic expedients. Energy 
additivity is not substantially different in the two basis sets, and 
the 3-G minimal basis set undoubtedly underestimates the changes 
in electronic structure of the various fragments. As a result, the 
conclusion that additivity is due to mutual cancelation of positive 
and negative deviations in different spatial regions is unlikely to 
require significant revision when these calculations are repeated 
using more refined theoretical techniques. However, from previous 
theoretical considerations,12 there are strong indications that the 
virial theorem and the Hellmann-Feynman theorem play a key 
role in this behavior.12 Consequently, we are interested in obtaining 
wave functions which satisfy the virial and Hellmann-Feynman 
theorems and which yield energies close to the Hartree-Fock limit. 
It will also be important to include correlation effects. The initial 
stages of this work are now underway with PROMETHEUS X. 

(29) The order calculated in the 4-31 basis set is reversed: H3C" > H2N" 
> HO" > P. 

(30) H. S. Johnston and C. Parr, /. Am. Chem. Soc, 85, 2544 (1963). 
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Table VII. Calculated Energy Components for Proton-Bound Anions 

E0, au T, au Vne, au K e x , a u V, C O ' au I 
nn au E, au 

b F H F 
0FHOH-
d H 0 H 0 H " 

A,a kcal 

-104.654 026 
-93.900 366 
-83.011915 

-42.291 

196.362699 
172.752830 
149.142551 

0.129 

-539.789 251 
-485.994 399 
-432.450 969 

78.884 

•21.583 721 
19.941 768 

•18.306 672 

2.151 

140.969 985 
129.612 370 
118.454 923 

-62.803 

27.677 591 
30.816317 
34.017615 

-19.632 

-196.362699 
-172.754 651 
-149.142551 

-1.271 
a A represents the deviation of the calculated component of FHOH" from the mean of the corresponding components for FHF and 

HOHOir. All values are in kcal. b r F H = 2.113 623 24 nB;n = 0.996 012 658. c r F H = 2.113 623 24 »B;rH0 = 2 - 2 3 5 8 6 8 0 9 »B-'OH = 
1.834418091 M B ^ H O H = 103.286°, TJ = 1.000108 850. d rHO = 2.235 868 09 M B ^ O H = 1.834418091 M B ^ H O H = 103.286°;T? = 
0.995 142 069. The exponents for FHOH- have been taken from the corresponding orbitals in the symmetrical structures, except for the 
bridging proton whose exponents arc the average of the corresponding exponents for the symmetrical structures. The scaling factor of 
1.000 108 850 for FHOH" indicates that this "hcmistructural" basis set was scaled by a factor of (1.000 108 850)2 to give the energies report­
ed above. 

Figure 4. Projected electron density difference plot for F-H-OH . 
Maximum equals 0.00517 electron/bohr2. 

As mentioned earlier, F -H-OH" shows a high degree of energy 
additivity ( ~ 1 kcal). Before closing, it would be worthwhile to 
examine this behavior somewhat further. In Table VII, the en­
ergies for F-H-F", F-H-OH- and H O - H - O H ' are listed. The 
geometries of the two symmetrical structures were carefully op­
timized (3G basis) with respect to X - H and H - Y distances. The 
scaling procedure was then applied to produce the scaling factors 
and new bond lengths reported in Table VII. The unsymmetrical 
structure F - H - O H " was scaled, maintaining the geometry at the 
hemi-structural positions defined by the final geometries of the 
scaled F - H - P and H O - H - O H " . Since the geometry of F - H -
OH" is not varied during the scaling procedure, the virial theorem 
is not exactly satisfied, but the error is small ( ~ 1 kcal). The 
individual potential energies, Vnn, Vne, and Vx, are substantially 
nonadditive (20-80 kcal), while E, T, and V are additive to within 
1.4 kcal. The additivity of the orbital energy is relatively poor 
( ~ 4 2 kcal). The exchange energy is additive to within 2.1 kcal, 
so that the classical electrostatic energy is somewhat less additive 
than E, T, and V. The overall pattern is similar to that observed 
for ArHNe + . 

The PEDD, POED, and PKED plots for F - H - O H " are shown 
in Figures 4-6. As with ArHNe+ , the degree of additivity depends 
on mutual cancelation of large positive and negative deviations 
in separate spatial regions. For example, the integrated orbital 
energy difference (Figure 5) over the F fragment yields about -132 
kcal, while the corresponding quantity over the OH fragment gives 
~ 8 3 kcal. The combined sum is roughly -49 kcal in reasonable 
agreement with the exact 3G scaled value of -42 kcal. The 
discrepancy is due to the numerical integration procedure 
(Simpson's rule) used for integrating the grids. Over the same 
regions, the integrated kinetic energy difference (Figure 6) is -60 
kcal (F) and +62 kcal (OH). The integrated total (2 kcal) is in 
reasonable agreement with the direct value (0.1 kcal). Once again, 
it is seen that additivity depends on mutual cancelation of different 
changes in electronic structure rather than similarity of fragment 

Figure 5. Projected orbital energy difference plot for F - H - O H - . (a) 
Core orbitals, maximum equals 0.302 au/bohr2. (b) Valence orbitals, 
maximum equals 0.027 au/bohr2. The integration mentioned in the text 
refers to the combined sum of core and valence orbitals. 

Figure 6. Projected kinetic energy difference plot for F -H-OH . 
Maximum equals 0.735 au/bohr2 . 
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electronic structure in different environments. 

The Relationship between Structural Transferability and 
Energy Additivity 

Transferability has often been used to rationalize observations 
of additivity.16 For example, Rothenberg31 has shown that orbitals 
of methane and ethane can be localized and that one-electron 
properties of the localized C-H orbitals vary by less than 2-3%. 
The kinetic energy associated with a C-H orbital in methane is 
0.8690 au while the corresponding quantity for ethane in the 
staggered conformation is 0.886 au.31 These values are within 
2% of each other, but the difference corresponds to about 10 kcal. 
However, additivity holds to a much higher degree for unbranched 
saturated hydrocarbons. For example, the total energies28'323 of 
propane (-118.09211 au), ethane (79.11582 au), and methane 
(-40.13978 au) are additive to within 0.08 kcal (4-31 G basis set). 
This additivity is not appreciably dependent on basis set and is 
seen for minimum basis sets as well.28,32b This comparison suggests 
that the degree of transferability seen with localized orbitals is 
not sufficient to account for the additivity in total energy. 

In a similar vein, Degand, Leroy, and Peeters33 have reproduced 
orbital energies for methane, ethane, and propane to within 0.1% 
by transferring Fock matrix elements derived from a basis set of 
localized orbitals. This comparison emphasizes that transferability 
is a reasonable description of the total wave functions, but the 

(31) S. Rothenberg, J. Am. Chem. Soc, 93, 68 (1971). 
(32) (a) L. Radom, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc, 94, 

2371 (1972). (b) The 3G energies of methane, ethane, and propane are 
-39.72686, -78.30618, and -116.88580 au (L. Radom and J. A. Pople, ibid., 
92, 4786 (1970)). The additivity is within 0.10 kcal. 

(33) (a) Ph. Degand, G. Leroy, and D. Peeters, Theor. Chim. Acta, 30, 
243 (1973). (b) The ab initio orbital energies for methane, ethane, and 
propane are -28.3284, -55.3636, and -82.5678 au. The orbital energy of 
ethane is 53.02 kcal above the mean orbital energy of methane and propane. 
In the same basis set (ref 33a), the transferable matrix element procedure gives 
-28.3000, -55.37980, and -82.5210 au. The absolute values agree reasonably 
well, but the orbital energy for "transferable" ethane is only 19.26 kcal above 
the mean. 

degree of additivity differs from the corresponding ab initio 
calculation by over 30 kcal.33b 

Another method based on transferable Fock matrix elements 
is the SAMO technique342 which has been applied to ethane, 
propane, and butane. The direct ab initio calculation gives additive 
total energies to within 0.10 kcal, while the SAMO energies are 
only additive to 30 kcal.34b 

Conclusions 
In the previous paper,12 it was demonstrated analytically that 

energy additivity does not require wave function transferability 
or constant electronic structure. In the current paper, examples 
have been presented which show a high degree of additivity in 
total energy, but not because of constant electronic structure. 
Large positive kinetic energy deviations (~80 kcal) in one spatial 
region are offset by comparable negative deviations in other regions 
to give a total kinetic energy which is additive to 0.1 kcal. The 
present work has shifted the focus from group transferability to 
mutual cancelation as the root of energy additivity. 
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(34) (a) J. E. Eilers and D. R. Whitman, J. Am. Chem. Soc, 95, 2067 
(1973). (b) The ab initio energies of ethane, propane, and butane are 
-78.8196, -117.6776, and -156.5353 au. The corresponding SAMO energies 
are -78.8049, -117.6275, and -156.5479 au. 
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Abstract: The syntheses and physical properties of a series of Fe(salen)X and Fe(saloph)X complexes where X is phenolate 
or catecholate are reported. Magnetic susceptibility measurements as well as electronic, infrared, and NMR spectra indicate 
that the catecholate in Fe(salen)catH behaves very much like a phenolate and is concluded to be monodentate in its coordination 
to the iron. The abstraction of a proton from Fe(salen)catH results in an anionic complex, [Fe(salen)cat]~, with markedly 
different properties; the catecholate in this complex is chelated. Both monodentate and chelated catecholate complexes are 
high-spin ferric, demonstrating that catecholate coordination to a bis(phenolato)iron(III) complex does not result in the reduction 
of the ferric center. This is in agreement with observations made on dioxygenase-substrate complexes. In addition, studies 
on a series of Fe(salen)X complexes where X is phenolate, thiophenolate, benzoate, and catecholate show that the dominant 
salen-to-Fe(III) charge-transfer interaction is modulated by the coordination of these ligands. Comparisons with corresponding 
dioxygenase complexes show that the tyrosinate-to-iron(III) charge-transfer interactions are similarly affected, thus indicating 
that the salen ligand provides a reasonable approximation of the iron environment in the dioxygenases. 

The interaction of molecular oxygen with metalloenzymes is 
currently an area of considerable activity.1 One interesting 
reaction is the dioxygenation of catechols to yield cis,cis-vcmccm\c 

acids, catalyzed by the nonheme iron enzymes catechol 1,2-di-
oxygenase and protocatechuate 3,4-dioxygenase.2'3 Spectroscopic 
studies on these enzymes show the active site iron to be a mo­

ll) Hayaishi, O., Ed. "Molecular Mechanisms of Oxygen Activation" 
Academic Press: New York, 1974. 

(2) Nozaki, M., in ref 1, Chapter 4. 
(3) Que, L., Jr. Struct. Bonding (Berlin) 1980, 40, 39-72. 
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